

DEVELOPMENT OF AN OEDOMETRIC CORE-BARREL FOR IN SITU MEASUREMENT OF THE THAW CONSOLIDATION BEHAVIOR OF PERMAFROST

Cédric Flécheux, Guy Doré (Director), Louis Gosselin (Codirector)
Theme 2 - M.Sc. project

OBJECTIVE

Improve the ability to characterize thawsensitive permafrost by developing a corebarrel for in situ thaw-consolidation testing.

METHODOLOGY

Develop a prototype, considering several specific requirements :

- Specific load and rate of consolidation
- Dry drilling and portable light drill equipment
- · Coring in ice-rich soils
- · Easy maintenance

Perform laboratory testing on fine (silt) and coarse (sand) soils with reconstituted ice lenses.

RESULTS

The prototype developed allows to:

- Perform rapid in situ thaw-consolidation tests under a range of vertical loads, instead of bringing frozen samples to a lab
- Estimate thaw-consolidation soil properties such as A_0 , m_v and C_{c_E}

Displacement as a function of time (McKinley, 1961) Phase 1: Thawing and draining of excess ice (20-40 min.)

Phase 2: Consolidation (168 kPa load applied after thaw)

Relative displacement curves, a function of the load applied on a sample of sand with ice lenses.

BENEFITS

- Following a presentation of the technology at the 2015 International Conference on Cold Regions Engineering, the oedometric core barrel was qualified as a "major breakthrough in permafrost engineering" by experts in attendance.
- Collaboration between Laval University (Civil and Mechanical Engineering Departments) and Arquluk partners will allow making final adjustments to the prototype and performing field tests.
- The technology is protected by a Canadian patent and the final product will be manufactured and commercialized.

