

Thermal stabilization of transport infrastructure built on unstable permafrost using high albedo surface treatments

CAROLINE RICHARD BSc., E.I.T., BGC Engineering Inc. SIMON DUMAIS MSc., PhD. candidate GUY DORÉ ing. PhD.

Laval University / Centre for Northern Studies

ARQULUK SYMPOSIUM Whitehorse, February 21st, 2018

Collaboration : Jade Haure-Touzé (internship)

High albedo surface treatment (HAST)

- Coating applied on asphalt or BST
- BST with light colored aggregates
- Light colored asphalt

Dawson City Front Street, Yukon (Colas)

Alaska Highway, Beaver Creek, Yukon

Salluit, Nunavik

Develop a methodology for thermal stabilization based on surface albedo

- Quantify the effect of a pavement's albedo on surface temperature
- Develop an approach to assess the technical properties of HAST
- Document the evolution of albedo with time for various pavement surfaces
- Develop a thermal stabilization method

Study sites

Properties of HAST

Proposed specifications for effective, durable and safe HAST in a northern context.

Reflectivity

Albedo

Pyranometer - ASTM E1918

Properties of HAST

Proposed specifications for effective, durable and safe HAST in a northern context.

Reflectivity

Albedo

Skid resistance

- Macro texture : Skid resistance in wet conditions, durability, thermal benefit
- Micro texture : Skid resistance in dry conditions

Sand patch - ASTM-E965

British Pendulum - ASTM E303

Properties of HAST

Proposed specifications for effective, durable and safe HAST in a northern context.

Reflectivity

Albedo

Skid resistance

- Macro texture : Skid resistance in wet conditions, durability, thermal benefit
- Micro texture : Skid resistance in dry conditions

Durability (Laboratory test)

- Abrasion resistance
- Adhesion to substrate

5 cycles

Sand blast - LC 21-102

Direct tension test – LC 25-010

Allowing a quick and accurate assessment of the thermal benefits of using high albedo surface treatment.

- Simple calculation tool
- Model adapts to different climate conditions

Simplified energy balance

Model – Calculation tool

3 types of data are needed to calculate surface temperature: Air temperature Solar radiation Wind speed

Use of the model

- Resolution by iterative calculation
- Calculation tool (Arguluk website)
- Calculation chart \bullet

ARQULUK - Calcul des températures superficielles des revêtements routiers							
Mode	Données à saisir			Albédo	Albédo		1
d'emploi	Données calculées			surface A	surface B		
				0,15	0,50		
	Radiation	Vitesse du	Température	Température	Température		30
	solaire	vent	de l'air	surface A	surface B		25
Rad 2015	[W/m²]	[km/h]	[°C]	[°C]	[°C]		25
Janvier	5,6	3,4	-25,7	-26,3	-27,0		20
Février	31,3	3,6	-20,3	-20,0	-21,1		15
Mars	106,2	4,8	-14,8	-10,0	-12,8		10
Avril	166,5	4,4	-0,8	5,5	1,4	ຼົ	10
Mai	236,8	6,6	8,1	17,0	11,9	a	5
Juin	232,9	6,0	12,6	21,3	16,2	rati	0
Juillet	191,6	6,1	16,4	23,0	18,6	pé	-5 jet jet
Août	143,5	5,1	11,0	16,1	12,3	Ten	Jan ten
Septembre	98,1	4,4	5,6	9,2	6,0		-10
Octobre	45,4	4,8	-2,8	-0,5	-2,5		-15
Novembre	13,8	2,9	-17,9	-16,8	-18,3		-20
Décembre	3,2	1,9	-20,6	-20,8	-21,9		25
	Indice de g	el (°C*jour)	3111	2848	3131		23
	Indice de dé	gel (°C*jour)	1648	2823	2035		-30

Use of monthly averages recommended

Absorbed solar radiation $q_{abs} = (1-a)q_{solar}$ (W/m²)

S. Dumais, G. Doré

Cold Regions Science and Technology 123 (2016) 44–52

Thawing depth - Example

Evolution of albedo with time

Thermal model

Mean Annual Temperatures used:

- Surface (using calculation tool and simplified energy balance)
- Interface natural soil/embankment (numerical simulation)
- Permafrost (zero amplitute depth)

*measured or estimated from available data for a specific site

Simplified climatic data used:

• An upper limit condition is imposed and is determined by the simplified energy balance

Thermal model – Chart development

Influence of albedo and embankment thickness on average annual temperature at soil/embankment interface (0 m)

- Embankment thickness: 1 m 3 m 5 m
- Surface albedo: 0.05 0.15 0.25 0.35 0.45

Low albedo $0.05 \rightarrow$ thick embankment = positive heat balance High albedo $0.45 \rightarrow$ thin embankment = more effective

In this case, albedo of 0.25 is required for thermal stabilization: T interface \leq T permafrost

Thermal model – Design chart

Conclusion

- Relationship between :
 - pavement surface temperature and albedo
 - albedo and pavement age
- Calculation tool of surface temperature and thaw penetration, using a simplified energy balance and a chart, allowing to quickly determine the need to use HAST on a specific site.

• Framework to assess technical properties of HAST for laboratory and in-situ tests.

• Thermal stabilization approach including :

- Model to determine thaw depth depending on site characteristics and albedo
- Difference of temperature required (T_{interface} T_{permafrost}) to limit heat intake and achieve thermal stabilization

Benefits

- The thermal stabilization approach proposed allows engineers to achieve thermal stability of paved roads or airstrips built on thaw-sensitive permafrost based on embankment thickness and albedo.
- Program partners Colas Canada (Skookum, Whitehorse) and Nippo Corporation (Japan) have developed high albedo surfacing products adapted for application in permafrost environments. Availability of well adapted products combined with testing procedures and design methodology make HAST a promising technique for thermal stabilization of paved roads and airfields in Northern Canada, Alaska and Asia.
- The next step will be to perform a large scale pilot application (~ 1 km) to document the cost-benefit of the technique.

THANK YOU!

